Архив метки: Прозвонка цепи

Блок питания для низковольтных устройств с ЗУ и прозвонками

Представляю вашему вниманию блок питания, который я наконец-то воспроизвёл на свет.

Внешний вид БП для низковольтных устройств с ЗУ и прозвонками.
БП для низковольтных устройств с ЗУ и прозвонками. Внешний вид

Перед ним были блоки питания, но были они мертворождёнными…. Нет, ими я конечно пользовался, но не часто…. Дело в том, что сделать хороший лабораторный блок питания для радиолюбителя событие такой важности, как сделать ребёнка в семейной жизни…. И при том — любимого ребёнка…. Блоку питанию можно петь Оду любви, если он получился на славу. Не могу сказать, что своей конструкцией я доволен на сто процентов, но доволен. Я в ней воплотил, чуть ли не половину замыслов о блоке питания.

Схема БП для низковольтных устройств с ЗУ и прозвонками.
БП для низковольтных устройств с ЗУ и прозвонками. Схема

Для радиолюбителя ведь важно подобрать соответствующий трансформатор и корпус. И в этой конструкции почти всё совпало. Конечно, нет в ней почти радиатора, но корпус металлический и своё дело делает, тем более, что большие токи мне пока не нужны. Интегральные стабилизаторы радиолюбители применяют уже давно, но чтобы заставить его регулироваться, пришлось «попотеть». Оказалось, что в общей цепи можно применять только низкоомные переменные резисторы, и такие у меня нашлись только проволочные. Но четыре выходных напряжения и два из них регулируемые, позволяют макетировать практические любые низковольтные устройства. Так как я сейчас часто обращаюсь к устройствам с питанием от аккумуляторов мобильных телефонов, то одно регулируемое напряжение я сделал с выходным напряжением от 3 до 4,2 вольта. Так же сделал простейшее зарядное устройство для зарядки аккумуляторов мобильных устройств с током заряда до 1 Ампера. И ещё ввёл в блок питания прозвонку аккустических приборов с прозвонкой цепи, так как они хотя и нужны не часто, но нужны. И, пожалуй, самым не приятным для современного радиолюбителя является трудность приобретения выходных клемм. Да и если они будут в наличии, то радиолюбитель много раз подумает, устанавливать на конструкцию такие габаритные детали. На мой взгляд, я нашёл компромиссное решение.

Конструкция клеммной  колодки
Клеммная колодка. Конструкция

Конструкция получилась легко повторяемой, ведь для неё нужны доступные электрические полиэтиленовые клеммные колодки и лужёная жесть от любой консервной банки. На фотографии изображена такая клеммная колодка и объединённая общая полоса. К такой миниатюрной клеммной колодке можно, в любой момент подключить провод и зажать его винтом или подпаять к лепестку. Зарядным устройством можно плавно регулировать зарядный ток, и контролировать ход заряда по двухцветному светодиоду.  Также установил выключатель сетевого питания от компьютерной сетевой переноски, что позволяет оперативно включать/выключать схему. Печатную плату не привожу, так как она индивидуальна.

Монтаж со стороны деталей платы БП
Плата БП в сборе. Монтаж со стороны деталей

И ещё: подготовленный радиолюбитель может мне возразить, что не очень правильно, что я применил однополупериодные выпрямители, но я считаю, что для моих целей это приемлемый компромисс. Тем более такие выпрямители были применены зарубежными радиолюбителями более тридцати лет назад, описание подобной конструкции можно найти в журнале Радио №1, 1987 года.

P.S.: Один мой знакомый, который дал мне схему электронных барабанов, тоже жил с такой бедой. И хотя он был уже давно радиоинженером, дома пользовался блоком питания, который он сделал, будучи ещё начинающим радиолюбителем. С его слов, и с ними я согласен, блок питания сделать просто, и в тоже время неимоверно трудно. Так как, если ты уже определился со схемой и подбираешь детали к своей конструкции, тебя грызёт изнутри червь сомнения – а та ли это схема…. И, как правило, вся идея быстро разваливается….

 

Прозвонка — две в одной

Предлагаю вашему вниманию схему двух прозвонок. Они совмещены в одном устройстве, так как в обеих присутствует один и тот же узел. Это генератор — двухполюсник, то есть его можно включить последовательно с нагрузкой и питанием. Одна прозвонка, это можно сказать и не прозвонка, а индикатор наличия напряжения с двумя входами, для того что бы можно было контроллировать напряжения разных полярностей, а также можно использовать для прозвонки монтажа, проводников и полупроводников (но, нужно помнить, что на клеммах присутствует напряжение 5 вольт). Вторая прозвонка – это пробник для определения исправности излучающих акустических приборов звуковой частоты.

Схема двух прозвонок в одной
Прозвонка — две в одной . Схема

Генератор собран по схеме стандартного мультивибратора на транзисторах VT4 и VT5 с рабочей частотой примерно 2000 герц. С коллектора транзистора VT5 сигнал, через защитный резистор R11 поступает на усилитель тока, это VT6 и VT7, собранные по схеме составного транзистора Дарлингтона.

Если этот генератор включить последовательно через источник питания, то на нагрузке будет присутствовать звук. Таким образом можно проверять различные динамические звуковые излучатели, на схеме для этого предназначены клеммы ХТ7 и ХТ8. Что бы проверить работоспособность звуковых пьезоизлучателей, нужно последний подключить параллельно коллектору и эмиттеру транзистора VT7 и последовательно с источником питания включить дроссель. В схеме это реализуется с помощью катушки индуктивности L1 и кнопки SB1. Звуковые пьезоизлучатели нужно подключять к клеммам ХТ5 и ХТ6.

На транзисторах VT2 и VT3 собрана прозвонка напряжения с перепадом с низкого на высокое напряжение. На  VT1 собрана прозвонка напряжения с перепадом с высокого на низкое напряжение. При появлении контроллируемых напряжений транзистор VT3 открывается и подключает к генератору встроенный в схему звуковой динамический излучатель BF1. Эта прозвонка предназначена для индикации работы таймеров собранных на микросхемах КМОП.

Транзисторы в устройстве применены самые ходовые, их можно заменить на любые соответствующей структуры.

Когда прозвонками не пользуются, то они практически не потребляют тока и поэтому устройство можно питать от автономного источника тока без выключателя питания. Прозвонки работоспособны при питании от 2 вольт, сам генератор работает и при напряжении питания от 1,5 вольт, но сила звука минимальна. Питание в 5 вольт самое оптимальное. При увеличении напряжения питания, возрастут и токи потребления, что повлечёт за собой увеличение мощности выходного транзистора  VT7, а возможно и  VT3, всё зависит от сопротивления звуковой катушки динамического излучателя BF1. Катушка индуктивности L1 была подобрана «на слух» из имеющихся в наличии.

Сторона пайки
Плата со стороны пайки
Плата с установленными деталями
Плата со стороны деталей

 

 

 

 

 

Плату разработал на тетрадном листе в клетку, изображение перенёс на омеднёную сторону с помощью шила. Из-за не желания возиться с реактивами, плата была обработанна дремелем – с помощью фрезы вырезал канавки между токопроводящими дорожками. Затем с помощью войлочного круга и пасты ГОИ зашлифована до блеска, с последуюшей промывкой спиртом, и далее пролудил припоем.

Когда встал вопрос о корпусе, то было решено вмонтировать прозвонки в блок питания, так как в нём было свободное место и блок питания всегда находится на рабочем столе.

 

Прозвонки наладчика и электрика

Прозвонку цепей применяют всегда при монтажных и пусконаладочных работах. Хоть и существует большой парк АВО-метров и мультиметров, но всё равно очень часто применяют простейшие прозвонки. Это такие пары как: батарейка – лампочка, батарейка – светодиод, батарейка – телефонная трубка. Так же прозвонки очень часто встраиваются в мультиметры. И всё это прекрасно работает до тех пор, пока вы «не влезете» в высокое напряжение. И все эти прозвонки «благополучно» сгорают. После очередного объекта, почти у каждого инженера сгорает по одному, и иногда более одного, мультиметру. Вот я и задумался о схеме прозвонки не сгорающей при попадании высокого напряжения на входные зажимы. Однажды увидел у рабочих пробник фирмы APPA Technology Corporation — Voltest-S, который позволяет прозванивать низкоомные цепи, и при этом «не сгорает» при попадании высокого напряжения на входные клеммы, а также способен индицировать величину напряжения в нескольких градациях. Поискав в Интернете цену на этот пробник, был неприятно удивлён – всё таки это не прибор, что бы так стоить….  

Введение. Вначале были «вялые» попытки, ни как не мог «нащупать нить». Однажды попалась статья в [1], очень интересная схема. Кроме прозвонки в четырёх градациях сопротивления цепи, можно проверять конденсаторы и полупроводниковые приборы. Повторил, настроил по рекомендациям  – всё работало. Сократил количество микросхем до одной, но всё же, это было не совсем то – не было чёткой индикации попадания на входные клеммы пробника напряжения. Начались более плотные поиски новых схемных решений. От логических элементов в измерительной цепи пришлось отказаться сразу – разброс входных характеристик у них очень высок. Обратил внимание на операционные усилители (ОУ). Дело пошло веселее. Опробовал около двух десятков схемных решений, было создано несколько схем, которые более менее работали и индицировали четыре градации прозвонки цепи, и по две градации напряжения в обеих полярностях и с соответствующей звуковой индикацией. Довёл в одной конструкции количество ОУ до 9 штук. Всё работало, но…. Это ведь пробник, а не крутой прибор. Вернулся к началу….

Часть 1. Прозвонка наладчика. Прозвонка в промышленных мультиметрах, собранная на ОУ включенном по схеме компаратора, наверное, является идеальной схемой. Эта схемотехника и лягла в основу моей окончательной конструкции. Всего лишь, пришлось устранить недочёт в схемотехнике мультиметров. Нет, в схемах мультиметров я не сомневаюсь, просто они не предназначены для таких перегрузок. При попадании высокого напряжения на клеммы прибора в режиме прозвонки сгорает R8 (к примеру, в схеме мультиметра M266F в [4] стр. 64) номиналом 2,2 кОм, который является нагрузкой измерительной цепи через источник питания мультиметра. Это удалось устранить, увеличив, всего лишь, номинал резистора до 44 килоом (два резистора сопротивлением по 22 килоома последовательно, ведь, как известно, резисторы расчитаны на напряжение примерно 250 вольт, да и чтобы применить резисторы с пониженной мощностью рассеивания).

Схема прозвонки наладчика
Прозвонка наладчика. Схема

Измеритель цепи выполнен по стандартной схеме компаратора напряжения на ОУ. Выход компаратора нагружен на делитель напряжения R17, R18 для корректной работы смесителя — инвертора на транзисторе VT6. Режим этого транзистора выбран таким образом,  что при появлении на выходе компаратора напряжения, оно открывает транзистор не полностью. Но этого напряжения вполне достаточно, чтобы логический элемент DD1.1 воспринял его как логический ноль и своим выходом закрыл диод VD5 и разрешил работу звукового генератора собранного на элементах  DD1.2 и DD1.3. Такой режим выбран для того, чтобы можно было подмешать и другие сигналы, более токовые. Так же логический элемент DD1.1 управляет работой светодиода HL3 «Цепь» и цепью разряда конденсатора таймера C5.

Схема измерителя напряжения собрана на транзисторах VT1, VT2 и оптроне U1. Светодиоды HL1 и HL2 индицируют полярность входного напряжения, соответственно «+» и «-». Работа этого узла описана в [2]. Отличие этой схемы от других в том, что она индуцирует величину входного напряжения в соответствующую частоту (преобразователь напряжение – частота). При входном напряжении от 10 до 300 вольт, на выходе частота изменяется от 0,25 до 30 герц. Эти выходные характеристики устанавливаются подбором резистора R5 в широких пределах. Иногда может понадобиться и подбор конденсатора C1. Применение оптрона U1 позволило простыми средствами развязать не совместимые гальванически схемы. На время регулировки можно включить параллельно диоду VD3 цепочку из сверхяркого светодиода и резистора 100 Ом. Фототранзистор U1.2 открываясь, пропускает напряжение питания через резистор R24 на базу транзистора VT6. Цепочка R23, C2 придаёт звуку большую мелодичность, затягивая спады импульсов. Резисторы R23 и  R24 служат для снижения тока конденсатора C2 через транзистор оптрона.

Транзисторы VT4 и VT5 образуют схему обнаружения скрытой проводки в стенах, а также большой напряжённости электрического поля. Следует добавить, что режимы измерения электрического поля и напряжения работают без включения питания, так как микросхема запитывается всегда и в дежурном режиме потребляет минимальный ток в 0,03 мА. Основной ток потребления, а это 2 мА, потребляет схема прозвонки цепи и 5 мА при измерении большого напряжения, поэтому и сделано отключение этого режима через ключ на транзисторе VT3.

Питается всё устройство старым Li-ion аккумулятором от мобильного телефона с внутренним контроллером. Можно конечно использовать и новый аккумулятор. Пробник оборудован схемой индикации заряда и разряда. При подключении блока питания от мобильного телефона (5 вольт), через разъём XS3 начинается зарядка аккумулятора. Номинал резистора R40 выбран таким, чтобы ток заряда был равен примерно десятой части от ёмкости аккумулятора (1000 мА/час). Такой режим обеспечивает заряд, без контроля температуры аккумулятора. Светодиод  HL6 «Контроль» светится во время заряда. Когда внутренний контроллер отключит аккумулятор от устройства, светодиод погаснет.

Если во время пользования прозвонкой нужно будет узнать величину разряда (заряда) аккумулятора, то нужно нажать на кнопку SB2 «Контроль», при этом к базе транзистора VT9 подключится стабилитрон VD7 и разность напряжений отобразится в виде свечения светодиода HL6 «Контроль». Яркое свечение покажет хороший заряд, слабое свечение или отсутствие свечения укажет на то, что требуется зарядить аккумулятор. Резистором R39 выбирается режим работы индикатора.

На логической микросхеме DD1 собрана схема, так сказать, сервисных услуг. Это схемы включения/выключения измерителя цепи, таймера автоматического отключения, схема сброса таймера и звуковой индикатор.

На элементах DD1.5 и DD1.6 собран выключатель, работа его описана в [3]. При нажатии на кнопку SB1 «Вкл./Выкл.» триггер переключится и логическая единица на выводе 8, запитает светодиод HL4 «Питание», а так же через резистор R33 начнёт заряжаться конденсатор C5 таймера собранного на логическом элементе DD1.4. Когда конденсатор C5 зарядится, а это примерно 10 минут, на выводе 12 появится логический ноль, который откроет транзистор VT8 и перебросит таймер включения в выключенное состояние. При этом логическая единица на выводе 10 через резистор R28 и конденсатор C3 приоткроет фототранзистор оптопары U1.2, на время заряда конденсатора и прозвучит сигнал предупреждения отключения питания. Любое измерение будет вызывать свечение светодиода HL3 «Цепь» и звучание пьезокерамического капсюля с резонирующей камерой BF1, посредством генератора на логических элементах DD1.2 и DD1.3, а также будет разряжаться конденсатор таймера C5, входящим в насыщение транзистором VT7, и после каждого измерения таймер будет считать время до выключения заново.

Так же в пробнике предусмотрен фонарик, освещающий щуп  для того чтобы легче было найти измеряемую цепь в хитросплетении проводов.

Детали. Светодиоды взяты из светодиодной цветной ленты, состоящей из отдельных сверхярких светодиодов. Главное чтобы светодиоды HL1 и HL2 были одного цвета и из одной ленты. Светодиод фонаря можно взять любой, белого свечения с линзой с углом рассеивания до 30о. Все транзисторы КТ315 и КТ361 с любой буквой, можно так же применить — КТ3102Б и КТ3107Б соответственно. XS3 — можно взять из неисправного,  мобильного телефона, у которого сохранилось зарядное устройство. Донором для BF1 может стать любой пьезокерамический капсюль с резонирующей камерой, к примеру, от «сгоревшего» мультиметра. Сенсор Е1 представляет собой провод в изоляции растянутый внутри корпуса длиной примерно 10 сантиметров.

Настройка. Необходимо подобрать резистор R14 такого номинала, который бы удовлетворял ваши потребности. При номинале, указанном на схеме, предел измерения цепи ограничен 30 Ом. Какой нужно установить – не понятно. Проведя анализ по характеристикам приборов из [4], результат был такой: у мультиметров М300, М320, М830, М832, М838 пределы прозвонки цепи ограничены 1000 Ом, а у MY61, MY62, MY64, MY68, M890 и M9205 – до 30 Ом. И ещё с падением напряжения питания этот режим сдвигается в сторону увеличения. Резистор R5 – установка частоты от входного напряжения (от 10 Ом до 100 кОм). Отношение резисторов R17 и R18 подобрать в случае отсутствия «трелей» в режиме индицирования напряжения. Резистор R22 подобрать по току светодиода. Резистор R40 подобрать по требуемому току заряда. Резистор R31 подобрать по резонансу применённого капсюля.

Схема прозвонки электрика
Прозвонка электрика. Схема

Часть вторая. Прозвонка электрика.  Эта схема была одним из итогов поиска нужной схемотехники. Идея этой схемы в том, чтобы в составе прозвонки были лампы накаливания, которыми электрики нагружают прозваниваемые цепи. Просто включить в предыдущюю схему лампочки не представляется возможным. Поэтому, было принято решение, создать схему, которая измеряла бы цепь через лампочки. Режимы компаратора устанавливаются посредством диодов. Применить ОУ не получилось – из-за очень большого усиления последнего: в схему очень сильно проникали переменные токи из сети, которые отфильтровывались, только с очень сильной инерцией. Поэтому был применен лишь кусочек от ОУ – дифференциальный каскад. Так как этот каскад потребляет меньший ток, чем в предыдущей схеме, то он был запитан прямо от 8 вывода DD1.6. EL1 и EL2 установлены с той целью, что существует возможность, попасть в две фазы, а это 380 вольт, при котором одна лампочка сразу сгорит. В принципе, можно включить и три лампочки. Следует помнить, что после подачи напряжения на щупы прозвонки лампочки разогреются и сопротивление их увеличится. И чтобы выйти на нормальный режим прозвонки цепи, нужно подождать, пока лампочки остынут.

Детали. В данной схеме нужно подбрать одинаковые транзисторы VT3 и  VT4 с коэффициентом  усиления не менее 150. EL1 и EL2 типа «Миньон», желательно поставить одной мощности от 10 до 50 ватт в керамических патронах.

Настройка. Настройка сводится, кроме всего того, что в предыдущей схеме, к подбору резистора  R9, которым устанавливается требуемое сопротивление цепи прозвонки при холодных накалах лампочек EL1 и EL2.

P.S. Схемы были созданы только на эксперементальных платах. Соответственно печатных плат нет.

Литература.

  1. С.Сташков. Четырёхуровневый экономичный пробник. Радио №8, 2002 г. стр.30
  2. В помощь радиолюбителю. Вып. 13: Информационный обзор для радиолюбителей/ Сост.М.В.Адаменко. — М.: НТ Пресс, 2007. — 64 с.: ил. — (Электроника своими руками). стр.5
  3. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. — 2-е изд., исправленное. — М.: Радио и связь, 1989. — 352 с., ил. »МРБ», Вып. 1145. 1989 г. стр.221
  4. Современные цифровые мультиметры/ Д.А.Садченков — М.: СОЛОН-Пресс.- 2002. — 112 с., серия «Библиотека ремонта» вып.1